Games, graphs, and machines

Modular arithmetic

July 31, 2024

Visualising modular arithmetic

Arithmetic modulo 10

- $a \equiv b \pmod{120}$ if and only if a and b have the same units digit (when written in base 10). positive
- Arithmetic modulo 10 = units digit arithmetic

$$\overline{7} \cdot \overline{6} = \overline{2}$$
 (mod 10)

a~iob

 $Q \equiv b \pmod{10}$

Laws of arithmetic:

Fix *d*. All the usual laws of arithmetic for \mathbb{Z} hold for equivalence classes modulo *d*. That is, + and \times are commutative and associative, have identity elements, and \times distributes over +.

- 1. What is the negative of $\overline{3}$ modulo 7?
- 2. Compute $\overline{3} \times \overline{5} \overline{1}3 \pmod{8}$.

$$\begin{array}{rrrr} 1. & -\overline{3} & =\overline{4} \\ & \overline{3}+\overline{4} & =\overline{0} \end{array} \end{array} \\ & -\overline{3} & = \overline{-3} \\ 2. & \overline{2} & = \overline{-6} \end{array}$$

(mod 7)

Laws of arithmetic: surprises

But some things are different. For example, it may happen that $a \times b = 0$ but $a \neq 0$ and $b \neq 0$.

Prove that $\overline{4} \cdot \overline{4} = \overline{0} \pmod{8}$ but $\overline{4} \neq \overline{0} \pmod{8}$.

By definition,
$$\overline{4} \times \overline{4} = 4 \times 4$$

= $\overline{16}$.

Now
$$\overline{16} = \overline{0}$$
, because $16 \equiv 0 \pmod{8}$.
But $\overline{4} \neq \overline{0}$ because $4 \neq \overline{0} \pmod{8}$
(8 does not divide 4)

Squares

Notation: $\mathbb{Z}/d\mathbb{Z}$ denotes the equivalence classes of \mathbb{Z} under the equivalence relation \sim_d . $\langle \mathbb{Z}/\partial\mathbb{Z} \rangle = d$ $\mathbb{Z}/\partial\mathbb{Z} = \sum_{i=1}^{d} \overline{O}, \overline{I},$ Of the 7 elements of $\mathbb{Z}/d\mathbb{Z}$, which ones are perfect squares? ..., $\overline{d-I}$ $\begin{cases} d=7 \end{cases}$

Square roots

What are the sqaure roots of $\overline{-1}$...

1. modulo 5?

$$\overline{0}, \overline{1}(\overline{2}, \overline{3}), \overline{4}$$

- 2. modulo 7?
- 3. modulo 8?